鈮作為微合金化元素在硅鋼片中的作用(二)

  為了檢查熱帶的退火處理(‘?;┑淖饔?,終軋溫度1000℃后溫水淬火試樣在950℃退火6~9min,隨后空冷。熱軋?jiān)嚇硬捎脙煞N不同的冷軋規(guī)程進(jìn)行冷軋。

  3.結(jié)論

  所有試樣都有相當(dāng)多的硅酸鹽夾雜物,常以纖維形式出現(xiàn)。此外,鋼A也有拉長的MnS,另外兩種實(shí)驗(yàn)室冶煉鋼B和鋼C含有復(fù)雜的球狀?yuàn)A雜物,認(rèn)為是(Ca,Al,Mn)氧硫化物,也發(fā)現(xiàn)存在尺寸小于100nm細(xì)小顆粒。通過X射線衍射儀觀察發(fā)現(xiàn),鋼A的顆粒為MnS,鋼B為AlN。除了這些尺寸只有幾個(gè)um的夾雜物外,而鋼C中都還有NbC和NbN。

  在所有試樣中都存在3個(gè)明顯的分層:表面處為等軸多邊形鐵素體,表明發(fā)生完全再結(jié)晶。離表面一定距離處多邊形鐵素體更多地呈拉長狀,說明回復(fù)或局部再結(jié)晶等軟化機(jī)制為主,而越往中心處是非再結(jié)晶的變形組織。

  熱軋?jiān)嚇又懈咚箍棙?gòu)的強(qiáng)度也與加工條件有關(guān)。終軋溫度1000℃,尤其當(dāng)采用更高的冷速時(shí),最有利于實(shí)現(xiàn)高體積分?jǐn)?shù)的{110}<001>取。如所料,發(fā)現(xiàn)當(dāng)終軋溫度高于1000C時(shí),高斯織構(gòu)的量隨溫度升高而降低。終軋溫度在900C時(shí)高斯織構(gòu)最小,這可能是在該溫度部分α→γ轉(zhuǎn)變引起的。

  對(duì)最大體積分?jǐn)?shù)高斯織構(gòu)的試樣(終軋溫度1000℃,水淬)在950℃退火幾分鐘,發(fā)現(xiàn)與熱軋條件得到的織構(gòu)相比,退火僅僅部分地影響了織構(gòu)含量。這些結(jié)果表明對(duì)那些經(jīng)過優(yōu)化的熱軋條件的材料可省去“?;幚怼?。

  冷軋薄板對(duì)經(jīng)過一階段冷軋及不同退火條件處理的試樣,研究了其中間厚度處組織變化,總結(jié)如下:隨著退火溫度和退火時(shí)間的增加,晶粒尺寸呈指數(shù)增加。對(duì)‘MnS’的鋼A尤為明顯,但鋼B和鋼C即使在920℃退火1.5h也無明顯的晶粒尺寸增加,證實(shí)AlN和Nb(C,N)非常有效地控制晶粒尺寸。

  鐵損對(duì)實(shí)驗(yàn)室加工獲得的“變壓器薄板”進(jìn)行了鐵損測量,并與工業(yè)生產(chǎn)數(shù)據(jù)做對(duì)比,可明顯看出,由實(shí)驗(yàn)材料測得的鐵損結(jié)果差于標(biāo)準(zhǔn)工業(yè)生產(chǎn)工藝結(jié)果,后者采用稍高些的二次再結(jié)晶退火溫度,為1175℃。但是,至少有兩種原因可解釋這一劣勢(shì):首先,實(shí)驗(yàn)室加工工藝如總變形量和變形速率等與工業(yè)生產(chǎn)規(guī)程不同,因此,工業(yè)生產(chǎn)坯料鋼A采用實(shí)驗(yàn)室加工工藝獲得的鐵損結(jié)果不能等同于工業(yè)生產(chǎn)產(chǎn)品,一般來說,要差些。其次,實(shí)驗(yàn)室熔煉的鋼B和鋼C的清潔度比工業(yè)生產(chǎn)的鋼A要差得多,引起鋼A樣具有與鋼B樣相同的鐵損,或更好,鋼B具有更有利的晶體學(xué)織構(gòu)。

鏈接:鈮作為微合金化元素在硅鋼片中的作用(一)